From Protein Engineering to Immobilization: Promising Strategies for the Upgrade of Industrial Enzymes

نویسندگان

  • Raushan Kumar Singh
  • Manish Kumar Tiwari
  • Ranjitha Singh
  • Jung-Kul Lee
چکیده

Enzymes found in nature have been exploited in industry due to their inherent catalytic properties in complex chemical processes under mild experimental and environmental conditions. The desired industrial goal is often difficult to achieve using the native form of the enzyme. Recent developments in protein engineering have revolutionized the development of commercially available enzymes into better industrial catalysts. Protein engineering aims at modifying the sequence of a protein, and hence its structure, to create enzymes with improved functional properties such as stability, specific activity, inhibition by reaction products, and selectivity towards non-natural substrates. Soluble enzymes are often immobilized onto solid insoluble supports to be reused in continuous processes and to facilitate the economical recovery of the enzyme after the reaction without any significant loss to its biochemical properties. Immobilization confers considerable stability towards temperature variations and organic solvents. Multipoint and multisubunit covalent attachments of enzymes on appropriately functionalized supports via linkers provide rigidity to the immobilized enzyme structure, ultimately resulting in improved enzyme stability. Protein engineering and immobilization techniques are sequential and compatible approaches for the improvement of enzyme properties. The present review highlights and summarizes various studies that have aimed to improve the biochemical properties of industrially significant enzymes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and Characteristics of Mesoporous Sol-gels for Lipase Immobilization

Enzyme cost is the major problem for industrial scale application. Immobilization is a promising approach to moderate the enzyme cost factor and increase its stability and activity. In this study, sol-gel method was used to prepare the immobilization platform and entrapped lipase as one of the most used enzyme in dairy processing, cosmetics and pharmaceutical industries. Lipase from Candida rug...

متن کامل

Investigation of Enzyme Immobilization Effects on its Characteristics

Background; Enzymes are well known as sensitive catalysts in the laboratory and industrial scale. To improve their properties and for using their significant potential in various reactions as a useful catalyst the stability of enzymes can often require improvement. Enzymes Immobilization on solid supports such as epoxy- functionalized ferric silica nanocomposite can be effective way to improve ...

متن کامل

Design of nanoscale enzyme complexes based on various scaffolding materials for biomass conversion and immobilization

The utilization of scaffolds for enzyme immobilization involves advanced bionanotechnology applications in biorefinery fields, which can be achieved by optimizing the function of various enzymes. This review presents various current scaffolding techniques based on proteins, microbes and nanomaterials for enzyme immobilization, as well as the impact of these techniques on the biorefinery of lign...

متن کامل

Practical Techniques for Improving the Performance of Polymeric Membranes and Processes for Protein Separation and Purification

Protein separation and purification technologies play an essential role in various industries including but not limited to pharmaceuticals, dairy as well as the food sector. Accordingly, a wide variety of techniques such as chromatography and electrophoresis has been developed and utilized extensively over the years for this purpose. Despite their widespread acceptance, conventiona...

متن کامل

Immobilization of Urease onto Modified Egg Shell Membrane through Cross Linking

Background: Immobilization is an approach in industry to improve stability and reusability of urease. The efficiency of this technique depends on the type of membrane and the method of stabilization. Methods: The PEI-modified egg shell membrane was used to immobilize urease by absorption and glutaraldehyde cross-linking methods. The membranes were characterized by Fourier-transform infrared sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2013